วันเสาร์ที่ 31 มกราคม พ.ศ. 2558

การดูแลไก่ชน หลังชนมา

การดูแลไก่ชน หลังชนมา 

เมื่อไก่ชนชนะมาควรปฏิบัติอย่างไร 
เมื่อไก่ชนะระหว่างยก 3-5 
ควรตรวจสอบดูว่ามันบาดเจ็บตรงจุดไหนบ้าง เมื่อตรวจพบบาดแผล ต้องรีบรักษาโดยด่วน เมื่ออาการบาดเจ็บหายดีแล้วยัง 
ไม่ควรอาบน้ำร้อน ควรให้อาบน้ำธรรมดาไปก่อน แล้วปล่อยลงดินให้มันได้คลุกฝุ่นบ้าง เพื่อเป็นการคลายความตึงเครียดของร่างกาย เมื่อมันนอนคลุกฝุ่น ดีแล้วก็จับมาอาบน้ำเย็นและทำการซ้อมเบา เพื่อวอร์มร่างกายให้คืนสภาพเดิม เมื่อดูว่าร่างกายคืนสถาพเดิมดีแล้ว นำไปซ้อมจริง 1 ยก แล้วนำมาเลี้ยงตาม ปกติ เพื่อเตรียมพร้อมในการออกชนต่อไป และการอาบน้ำร้อนควรไม่เกิน 15 วันสำหรับไก่ชนที่ชนะมา 
ส่วนไก่ชนที่ชนะตั้งแต่ยก 6 ขึ้นไป 
ก็ทำเหมือนกัน ถ้ามีแผลที่ใบหน้าก้รีบรักษาโดยทันที เมื่อบาดแผลเริ่มเป็นสะเก็ดแข็ง และแห้ง ควรถ่ายยาแก้ช้ำใน หลังจากถ่ายยาแล้ว สะเก็ดแผลหลุดหมดแล้ว ก็เริ่มทำการออกกำลังกายได้ 
ไก่ชนเมื่อหมดสภาพไม่ควรทำลาย 
ไม่ว่าไก่จะแพ้หรือหมดสภาพ จะต้องคิดก่อนว่าจะทำอย่างไร ห้ามทำลายหรือปล่อยทิ้ง ทางที่ดีต้องตอบแทนบุญคุณมันบ้าง โดยการหาที่ว่างๆสักหน่อยพอที่ จะให้มันอยู่กับตัวเมียที่เราหามาให้ เพาะเอาลูกมันไว้สักคอกหนึ่ง เมื่อเราเอาใจใส่กับมันสภาพจิตใจมันก็จะดีขึ้น และอาจจะให้ลุกไก่ชนดีๆสักคอกก็ได้ ไก่ชน ทุกตัวมันจะคุ้นเคยกับเจ้าของที่เลี้ยงมัน เมื่อมันเห็นคนเลี้ยง มันก็จะแสดงอาการดีใจ คนเลี้ยงไก่ชนจะมีความผูกพันกับไก่เป็นพิเศษ เราต้องรู้จักเอาใจใส่มัน ให้ดีและดูแลให้ความรักกับมัน ไก่ชนก็มีจิตใจเหมือนกัน ดังนั้นจึงไม่ควรทิ้งขว้าง ควรเก็บและรักษามันไว้ให้ดี 
การทำความสะอาดบริเวณที่เลี้ยงไก่ชน 
เรื่องความสะอาดต้องมาเป็นอันดับแรก เพราะบริเวณที่เลี้ยงไก่ นอกจากไก่ชนแล้วอาจมีสิ่งอื่นๆ เช่น เห็บ ไร ที่มีตามตัวไก่ หรือแม้แต่สุ่มขังไก่ก็อาจจะมี ไรเกาะอยู่ ถ้าสังเกตดีๆไรจะเกาะอยู่ตามหัวสุ่ม 
ขี้ไก่ก็เป็นอีกส่วนหนึ่งที่ควรทำความสะอาดทุกครั้ง เช่น ขี้ไก่อาจจะติดใต้อุ้งเท้าไก่ เมื่อมันแห้งก็จะติดอยู่อย่างนั้น เมื่อมันกระโดดหรือเดินย่ำอยู่เรื่อยๆ มันก็ จะไปหนุนใต้อุ้งเท้า ทำให้อุ้งเท้าแข็งจนเป็นไตหรือก้อนเนื้อแข็งใต้อุ้งเท้า หรือที่เราเรียกว่า " หน่อ" หรือไม่อาจจะมีพยาธิติดมากับขี้ไก่ ไก่ก็จะติดพยาธิได้ ฉะนั้นเมื่อจะนำไก่เข้านอนควร ทำความสะอาดทุกครั้ง เมื่อบริเวณที่เลี้ยงไก่สะอาด สุขภาพของไก่ก็จะดีมีความสมบูรณ์
การดูแลรักษาไก่หลังจากชนมาแล้ว
หลังจากที่นำไก่ออกมาจากสังเวียนแล้ว ให้กราดน้ำเช็ดตัวไปตามปกติ เช็ดตามบริเวณใบหน้าที่มีเลือดติดอยู่ออกให้หมด ถ้าเช็ดออกไม่หมดอาจทำให้เกิดปรวดได้ และถ้ามีแผลเย็บไว้ จะเป็นแผลถ่างตา แผลตามหัว เข้าปากไว้ ให้ตัดด้ายที่เย็บไว้ออกให้หมด เพราะถ้าไม่ตัดด้าย อาจจะทำให้แผลหายช้า หรือแผลหายไม่สนิทเหมือนเดิม ตัดด้ายออกให้หมดแล้วเช็ดด้วยกระเบื้องให้แห้ง ทาด้วยยาเพนนิสรินใส่แผลชนิดขี้ผึ้งทาทิ้งไว้
ถ้าไก่ถูกตีมากๆ ขนาดมาถึงบ้านแล้วยังไม่ลุก นอนตลอดเวลา ให้เอาน้ำเกลือแห้งนิวเพาร์เวอร์ครึ่งซองผสมน้ำพอประมาณ ให้กินแทนข้าวไปก่อนสัก 2 วันเช้า-เย็น พร้อมกับยาแก้อักเสบให้กินวันละ 1 เม็ด ในระยะ 2 วัน ห้ามกินข้าวสุก ข้าวเปลือกเป็นอันขาด โดยเฉพาะกล้วย เพราะกล้วยนั้นย่อยยากมาก ควรให้น้ำเกลือไปก่อน หลังจาก 2 วันไปแล้ว ลองเอาข้าวสุกให้กินก่อนให้กินกับน้ำเกลือก็ได้ ให้มื้อละ 2-3 ก้อน เช้า-เย็น แล้วลองสังเกตดูว่าย่อยหมดกระเพาะไหม ถ้าย่อยหมดก็ให้กินเพิ่มขึ้นได้เรื่อยๆ ให้ยาบำรุงร่างกายด้วยก็ได้ เพราะจะทำให้ไก่ฟื้นตัวเร็ว พอไก่ฟื้นตัวแล้วควรปล่อยให้ไก่อยู่ในที่กว้างๆที่มีหญ้าแพรกสดให้กิน อย่าให้อยู่แต่ในสุ่มเป็นอันขาด เพราะจะทำให้ไก่ตึง หลังจากไก่ฟื้นตัวได้ 15 วัน ควรถ่ายยาลุภายในร่างกายที่ถูกตีมา ถ่ายช้ำใน ถ่ายด้วยยาสมุนไพร ไม่ใช่ใช้ยาถ่ายพยาธิถ่าย ถ่ายในร่างกายให้หายจากการฟกช้ำดำเขียว หลังจากถ่ายยาลุได้ 7 วัน ลองให้ไก่วิ่งสุ่มเบาๆไปก่อน เพื่อเป็นการยืดเส้น ยืดสายไปในตัว ยาถ่ายลุนี้ทำด้วยสมุนไพรมีดังนี้
1. ไพล 2 หัวใหญ่
2. เกลือแกงครึ่งช้อนแกง
3. น้ำตาลปีบ 1 ช้อนแกงพูน
4. มะขามเปียก 1 ปั้น
5. ยาดำเล็กน้อย
เอามาตำให้ละเอียด ผสมกันให้เข้ากันดี ให้กินครั้งละ 2-3 ก้อนเท่าหัวแม่มือ แล้วให้น้ำอุ่นๆกินให้เกือบเต็มกระเพาะ ทิ้งไว้ในบริเวณที่สะอาดๆ และต้องคอยดูด้วยว่าไก่ถ่ายยาออกหมดหรือยัง คลำดูกระเพาะจะรู้ ถ้าหมดแล้วควรให้กินข้าวสุกทุกครั้ง ไก่เวลาถ่ายยาแล้วให้กินข้าวเปลือกส่วนมากจะไม่ค่อยย่อย หรือย่อยไม่หมด ควรให้กินข้าวสุกก่อนเป็นการดี
ถ้าไก่ที่ชนมาแล้วตามเนื้อตามตัวมีรอยฟกช้ำดำเขียว ให้เอาเคาร์เตอร์เพนบาล์ม ทาตามรอยที่ฟกช้ำบางๆ เอานิ้วชี้ขยี้ให้ทั่วบริเวณที่ฟกช้ำ อย่าใช้ยามากจนเกินไป เพราะเคาร์เตอร์เพนบาล์มเป็นยาร้อน แต่ถ้าใช้บางๆแผลฟกช้ำของไก่จะหายเร็วกว่ายาชนิดอื่นๆ อย่าเอาไปทาที่แข้งของไก่เป็นอันขาด ถ้าทา เกล็ดของไก่จะหลุดหมด ทาได้ตามเนื้อหนังเท่านั้น ส่วนที่เป็นเกล็ดห้ามทา


อ้างอิง http://www.kaichon.com/kailangchonma.htm

วันศุกร์ที่ 30 มกราคม พ.ศ. 2558

พลังงานแสงอาทิตย์

พลังงานแสงอาทิตย์ - การเปลี่ยนแสงอาทิตย์เป็นพลังงาน

พลังงานแสงอาทิตย์ถูกใช้งานอย่างมากแล้วในหลายส่วนของโลก และมีศักยภาพในการผลิตพลังงานมากกว่าการบริโภคพลังงานของโลกในปัจจุบันหลายเท่าหากใช้ประโยชน์อย่างเหมาะสม พลังงานแสงอาทิตย์สามารถใช้โดยตรงเพื่อผลิตไฟฟ้าหรือสำหรับทำความร้อน หรือแม้แต่ทำความเย็น ศักยภาพในอนาคตของพลังงานแสงอาทิตย์นั้นถูกจำกัดโดยแค่เพียงความเต็มใจของเราที่จะคว้าโอกาสนั้นไว้
มีวิธีการมากมายที่สามารถนำพลังงานจากแสงอาทิตย์มาใช้งานได้ พืชเปลี่ยนแสงอาทิตย์เป็นพลังงานทางเคมีโดยใช้การสังเคราะห์แสง เราใช้ประโยชน์จากพลังงานนี้โดยการกินพืชและเผาฟืน อย่างไรก็ตามคำว่า "พลังงานแสงอาทิตย์" หมายถึงการเปลี่ยนแสงอาทิตย์โดยตรงมากกว่าเปลี่ยนไปเป็นพลังงานความร้อนหรือพลังงานไฟฟ้าสำหรับใช้งาน ประเภทพื้นฐานของพลังงานแสงอาทิตย์ คือ "พลังความร้อนแสงอาทิตย์" และ "เซลล์แสงอาทิตย์"
บ้านพลังงานแสงอาทิตย์ในประเทศอังกฤษ พลังงานแสงอาทิตย์สามารถผลิตไฟฟ้าและน้ำร้อนเพื่อใช้ในประเทศได้
บ้านพลังงานแสงอาทิตย์ในประเทศอังกฤษ พลังงานแสงอาทิตย์สามารถผลิตไฟฟ้าและน้ำร้อนเพื่อใช้ในประเทศได้
เซลล์แสงอาทิตย์
กระบวนการของเซลล์แสงอาทิตย์คือการผลิตไฟฟ้าจากแสง ความลับของกระบวนการนี้คือการใช้สารกึ่งตัวนำที่สามารถปรับเปลี่ยนให้เหมาะสมเพื่อปล่อยประจุไฟฟ้า ซึ่งเป็นอนุภาคที่ถูกชาร์จที่ขั้วลบ สิ่งนี้เป็นพื้นฐานของไฟฟ้า
สารกึ่งตัวนำที่ใช้กันมากที่สุดในเซลล์แสงอาทิตย์คือซิลิกอน ซึ่งเป็นองค์ประกอบที่พบโดยทั่วไปในทราย เซลล์แสงอาทิตย์ทุกชิ้นมีสารกึ่งตัวนำดังกล่าว 2 ชั้น ชั้นหนึ่งถูกชาร์จที่ขั้วบวก อีกชั้นหนึ่งถูกชาร์จที่ขั้วลบ เมื่อแสงส่องมายังสารกึ่งตัวนำ สนามไฟฟ้าที่แล่นผ่านส่วนที่ 2 ชั้นนี้ตัดกันทำให้ไฟฟ้าลื่นไหล ทำให้เกิดกระแสไฟฟ้าสลับ ยิ่งแสงส่องแรงมากเท่าใด ไฟฟ้าก็ลื่นไหลมากขึ้นเท่านั้น
ดังนั้นระบบเซลล์แสงอาทิตย์จึงไม่ต้องการแสงอาทิตย์ที่สว่างในการปฏิบัติงาน นอกจากนี้ยังผลิตไฟฟ้าในวันเมฆมากได้ด้วยเนื่องจากผลิตไฟฟ้าได้สัดส่วนกับความหนาแน่นของเมฆ นอกจากนี้ วันที่มีเมฆน้อยยังผลิตพลังงานได้สูงขึ้นกว่าวันที่ท้องฟ้าแจ่มใสปราศจากเมฆ เนื่องจากแสงอาทิตย์สะท้อนมาจากเมฆ
เป็นเรื่องปกติในปัจจุบันที่จะใช้เซลล์แสงอาทิตย์ขนาดเล็กมากให้พลังงานให้กับอุปกรณ์ขนาดเล็ก เช่น เครื่องคิดเลข นอกจากนี้เซลล์แสงอาทิตย์ยังใช้เพื่อผลิตไฟฟ้าในพื้นที่ที่ไม่มีสายส่งไฟฟ้า เราได้พัฒนาตู้เย็นที่เรียกว่าความเย็นจากแสงอาทิตย์ (Solar Chill) ที่สามารถปฏิบัติงานโดยใช้พลังงานแสงอาทิตย์ หลังจากทดสอบแล้วจะถูกนำไปใช้ในองค์กรสิทธิมนุษยชนเพื่อช่วยให้บริการวัคซีนในพื้นที่ที่ไม่มีไฟฟ้า และจะถูกนำไปใช้โดยผู้ที่ไม่ต้องการพึ่งพาสายส่งไฟฟ้าเพื่อรักษาความเย็นของอาหาร
นอกจากนี้ สถาปนิกยังใช้เซลล์แสงอาทิตย์เพิ่มมากขึ้นโดยใช้เป็นคุณลักษณะสำคัญของการออกแบบ ตัวอย่างเช่น หลังคากระเบื้องหรือหินชนวนติดเซลล์แสงอาทิตย์สามารถใช้แทนวัสดุทำหลังคาที่ใช้กันทั่วไป ฟิล์มแบบบางที่ยืดหยุ่นสามารถนำไปประกอบเข้ากับหลังคารูปโค้งได้ ในขณะที่ฟิล์มกึ่งโปร่งแสงทำให้เกิดการผสมผสานแสงเงาเข้ากับแสงในตอนกลางวัน นอกจากนี้เซลล์แสงอาทิตย์ยังสามารถผลิตพลังงานสูงสุดให้กับอาคารในวันอากาศร้อนในฤดูร้อนเมื่อระบบปรับอากาศต้องใช้พลังงานมากที่สุด ดังนั้นจึงช่วยลดภาวะไฟฟ้าเพิ่มปริมาณขึ้นสูงสุด
เซลล์แสงอาทิตย์ทั้งขนาดใหญ่และเล็กสามารถผลิตพลังงานให้กับสายส่งไฟฟ้า หรือทำงานได้ด้วยตัวของมันเอง
โรงไฟฟ้าพลังความร้อนจากแสงอาทิตย์
ฟาร์มเซลล์แสงอาทิตย์ในแคลิฟอร์เนีย
ฟาร์มเซลล์แสงอาทิตย์ในแคลิฟอร์เนีย
กระจกขนาดใหญ่รวมแสงอาทิตย์ให้อยู่ในเส้นหรือจุดเดียว ความร้อนที่ถูกสร้างขึ้นนี้ใช้ผลิตไอน้ำ จากนั้นไอน้ำที่ร้อนและมีแรงดันสูงให้พลังงานกับใบพัด ซึ่งทำให้เกิดไฟฟ้า ในภูมิภาคที่แสงอาทิตย์ร้อนแรงมาก โรงไฟฟ้าพลังความร้อนจากแสงอาทิตย์สามารถรับประกันได้ว่าจะมีการแบ่งกันผลิตไฟฟ้าได้ปริมาณมากเท่าๆ กัน
จากความสามารถในการผลิตไฟฟ้าในปัจจุบันที่เพียง 354 เมกะวัตต์ โรงไฟฟ้าพลังความร้อนจากแสงอาทิตย์ที่มีความสามารถในการผลิตอยู่ตัวแล้วจะผลิตไฟฟ้าได้เกิน 5,000 เมกะวัตต์ ภายในพ.ศ. 2558 ตามที่ได้คาดการณ์ไว้ ความสามารถในการผลิตเพิ่มเติมจะเพิ่มขึ้นเกือบถึง 4,500 เมกะวัตต์ต่อปี ภายในพ.ศ. 2563 และพลังงานความร้อนจากแสงอาทิตย์ที่มีความสามารถในการผลิตอยู่ตัวแล้วทั่วโลกอาจเพิ่มขึ้นไปถึงเกือบ 30,000 เมกะวัตต์ ซึ่งมากพอที่จะจ่ายไฟฟ้าให้กับบ้าน 30 ล้านหลัง
การทำความร้อนและการทำความเย็นจากแสงอาทิตย์
การทำความร้อนจากแสงอาทิตย์ใช้ความร้อนจากดวงอาทิตย์โดยตรง ตัวสะสมความร้อนจากแสงอาทิตย์บนหลังคาของคุณสามารถผลิตน้ำร้อนสำหรับบ้านคุณได้ และช่วยให้ความร้อนแก่บ้านของคุณ ระบบความร้อนจากแสงอาทิตย์มีพื้นฐานอยู่บนหลักการง่ายๆ ที่รู้จักกันมาหลายศตวรรษ นั่นคือ ดวงอาทิตย์ทำความร้อนให้น้ำที่อยู่ในท่อทึบแสง ปัจจุบันเทคโนโลยีความร้อนจากแสงอาทิตย์ในตลาดมีประสิทธิภาพและน่าเชื่อถือสูง และผลิตพลังงานแสงอาทิตย์ให้กับอุปกรณ์จำนวนมาก ตั้งแต่น้ำร้อนและการทำความร้อนในอาคารพักอาศัยและอาคารพาณิชย์ ไปจนถึงการทำความร้อนในสระว่ายน้ำ การทำความเย็นโดยใช้แสงอาทิตย์ การทำความร้อนในกระบวนการอุตสาหกรรม และ การกำจัดความเค็มของน้ำดื่ม
การผลิตน้ำร้อนในครัวเรือนเป็นการใช้งานความร้อนจากแสงอาทิตย์ที่นิยมที่สุดในปัจจุบัน ในบางประเทศการผลิตน้ำร้อนเป็นเรื่องทั่วไปในอาคารพักอาศัย พลังงานแสงอาทิตย์สามารถตอบสนองความต้องการใช้น้ำร้อนได้เกือบถึง 100%  ขึ้นอยู่กับสภาพและการกำหนดองค์ประกอบของระบบ ระบบที่ใหญ่กว่าสามารถตอบสนองความต้องการพลังงานปริมาณมากสำหรับการทำความร้อนในสถานที่ เทคโนโลยีประเภทหลัก 2 ประเภท ได้แก่
ท่อสูญญากาศ - ตัวดูดซับข้างในท่อสูญญากาศดูดซับรังสีจากดวงอาทิตย์และทำความร้อนให้กับของเหลวข้างใน เหมือนกับตัวดูดซับในแผงเซลล์แสงอาทิตย์แบบแบน ตัวสะท้อนแสงด้านหลังท่อเป็นตัวดูดซับลำแสงเพิ่มเติม ไม่ว่าดวงอาทิตย์จะอยู่ในองศาใด ท่อสูญญากาศรูปทรงกลมจะช่วยให้แสงอาทิตย์เดินทางไปยังตัวดูดซับได้โดยตรง แม้แต่ในวันเมฆมากที่แสงเข้ามาในหลายองศาพร้อมกันแต่ตัวดูดสะสมแสงของท่อสูญญากาศก็ยังมีประสิทธิภาพมาก
ตัวสะสมแสงอาทิตย์ของแผงเซลล์แสงอาทิตย์แบบแบน - กล่าวง่ายๆ ตัวสะสมแสงเป็นกล่องที่มีฝาเป็นกระจก ที่ตั้งอยู่บนหลังคาเหมือนหน้าต่างบนหลังคา ในกล่องนี้มีชุดท่อทองแดงที่มีปีกทองแดงติดอยู่ โครงสร้างทั้งหมดถูกเคลือบด้วยสารสีดำที่ออกแบบมาเพื่อดูดลำแสงอาทิตย์ ลำแสงอาทิตย์เหล่านี้ทำให้น้ำร้อนขึ้น และป้องกันการเยือกแข็งของส่วนผสมที่ไหลเวียนจากตัวสะสมแสงลงไปยังเครื่องทำน้ำร้อนในห้องใต้ดิน
เครื่องทำความเย็นด้วยแสงอาทิตย์ - เครื่องทำความเย็นจากแสงอาทิตย์ใช้พลังงานความร้อนเพื่อผลิตความเย็น และ/หรือทำความชื้นให้กับอากาศในวิธีเดียวกับตู้เย็นและเครื่องปรับอากาศทั่วไป อุปกรณ์นี้เหมาะสมกับพลังงานความร้อนจากแสงอาทิตย์อย่างยิ่ง เนื่องจากความต้องการความเย็นมีมากที่สุดเมื่อมีแสงอาทิตย์ส่องมากที่สุด การทำความเย็นจากดวงอาทิตย์ได้รับการทดสอบการใช้งานอย่างประสบความสำเร็จมาแล้ว และในอนาคตคาดว่าจะมีการใช้งานในวงกว้าง เนื่องจากราคาของเทคโนโลยีนี้ถูกลง โดยเฉพาะราคาของระบบขนาดเล็ก

วันพฤหัสบดีที่ 29 มกราคม พ.ศ. 2558

ไฟฟ้าพลังน้ำ (Hydroelectricity)

ไฟฟ้าพลังน้ำ (Hydroelectricity)


พลังน้ำ (Hydropower)
พลังน้ำ คือ พลังหรือกำลังที่เกิดจากการไหลของน้ำ ซึ่งเป็นพลังที่มีอนุภาพมาก หากไม่สามารถควบคุมได้ พลังน้ำนั้นก็สามารถทำให้เกิดความเสียหายแก่ชีวิตและทรัพย์สินได้อย่างกว้างขวาง ดังตัวอย่างเช่น การเกิดอุทกภัยในบริเวณที่ลาดเชิงเขา หรือบริเวณที่มีความลาดชันสูง และการเกิดสึนามิ เป็นต้น ในทางตรงกันข้าม หากสามารถควบคุมพลังน้ำได้ตามแนวทางที่เหมาะสม พลังน้ำอันมหาศาลนั้น ก็สามารถนำมาใช้เป็นประโยชน์แก่มนุษยชาติได้
พลังน้ำได้ถูกใช้ประโยชน์มาแล้วหลายร้อยปี กังหันน้ำสำหรับยกน้ำขึ้นสู่ที่สูงเพื่อใช้ประโยชน์ในครัวเรือนและการชลประทาน เพื่อหมุนเครื่องจักรในโรงงานสีข้าว โรงงานทอผ้า โรงงานเลื่อยไม้ และโรงงานอุตสาหกรรมต่างๆ ในปัจจุบัน นิยมใช้ในการผลิตไฟฟ้า ซึ่งเรียกว่า ไฟฟ้าพลังน้ำ
หลักการทำงานของไฟฟ้าพลังน้ำ
ไฟฟ้าพลังน้ำ คือ ไฟฟ้าที่เกิดจากพลังน้ำ โดยใช้พลังงานจลน์ของน้ำซึ่งเกิดจากการปล่อยน้ำจากที่สูงหรือการไหลของน้ำ หรือการขึ้น-ลงของคลื่น ไปหมุนกังหันน้ำ (Turbine) และเครื่องกำเนิดไฟฟ้า โดยพลังงานที่ได้จากไฟฟ้าพลังน้ำนี้ ขึ้นอยู่กับปริมาณน้ำ ความแตกต่างของระดับน้ำ และประสิทธิภาพของกังหันน้ำและเครื่องกำเนิดไฟฟ้า กำลังไฟฟ้าและพลังงานจากพลังน้ำ สามารถคำนวณได้จากสมการ ดังนี้
Turbine Formulas
นอกจากตัวแปรที่ใช้ในการคำนวณกำลังไฟฟ้าแล้ว ควรต้องทำความรู้จัก Plant Factor ซึ่งหมายถึง สัดส่วนของพลังงานที่ผลิตได้ในช่วงเวลาหนึ่งต่อพลังงานที่คาดว่าจะผลิตได้เต็มตามศักยภาพในช่วงเวลาทั้งหมด โดยปกติทั่วไป ค่า Plant Factor จะต่ำกว่า 1 หรือ ต่ำกว่า 100% ทั้งนี้เนื่องจากการปิดโรงไฟฟ้าเพื่อซ่อมและบำรุงรักษาประจำปี นอกจากนี้ ยังผันแปรตามปัจจัยอื่นๆ อีก อาทิ ความมากน้อยของปริมาณน้ำ (แหล่งเชื้อเพลิง) และการออกแบบ หากออกแบบโรงไฟฟ้าพลังน้ำให้เดินเครื่องเป็นระยะเวลาที่ยาวขึ้น ค่า Plant Factor ย่อมสูงกว่าโรงไฟฟ้าพลังน้ำที่มีระยะเวลาเดินเครื่องที่สั้นกว่า โดยปกติทั่วไป หากโรงไฟฟ้าพลังน้ำ
มีข้อจำกัดด้านปริมาณน้ำ โรงไฟฟ้าพลังน้ำนั้น จะผลิตไฟฟ้าเพื่อตอบสนองเฉพาะในช่วงเวลาที่มีความต้องการไฟฟ้าสูงสุด เพราะเป็นช่วงเวลาที่ให้ค่าตอบแทนสูงสุด ในประเทศไทย ช่วงที่มีการใช้ไฟฟ้ามาก คือ วันทำงานในช่วงเวลา 9:00-12:00 น. 13:00-15:00 น. และ 19:00-21:00 น.
รูปแบบของไฟฟ้าพลังน้ำ
โดยทั่วไป รูปแบบของไฟฟ้าพลังน้ำที่นิยมใช้กันแพร่หลาย มี 3 ประเภท คือ
HDPW-Dam1. ไฟฟ้าพลังน้ำจากอ่างเก็บน้ำ อ่างเก็บน้ำจะทำหน้าที่รวบรวมและเก็บกักน้ำ เมื่อปล่อยน้ำจากอ่างเก็บน้ำลงสู่ที่ต่ำโดยแรงดึงดูดของโลก พลังน้ำที่เกิดจากการไหลจะหมุนกังหันน้ำ (Turbine) และเครื่องกำเนิดไฟฟ้า ในกรณีที่เป็นอ่างเก็บน้ำ
ขนาดใหญ่ จะทำให้สามารถบริหารจัดการน้ำได้สะดวก ดังนั้น ในเชิงเศรษฐศาสตร์หรือธุรกิจแล้ว โรงไฟฟ้าพลังน้ำประเภทนี้ มักผลิตไฟฟ้าในช่วงที่มีความต้องการไฟฟ้าสูง ซึ่งเป็นช่วงที่ให้ค่าตอบแทนสูง
ปริมาณไฟฟ้าที่ผลิตได้จากโรงไฟฟ้าพลังน้ำจากอ่างเก็บน้ำจะผันแปรตามปริมาณน้ำที่ปล่อยจากอ่างเก็บน้ำ และความแตกต่างระหว่างระดับน้ำในอ่างเก็บน้ำและระดับน้ำที่ปล่อย (ด้านท้ายน้ำ)
โดยทั่วไป โครงการไฟฟ้าพลังน้ำส่วนใหญ่จะเป็นในรูปแบบของไฟฟ้าพลังน้ำจากอ่างเก็บน้ำ ในประเทศไทยก็เช่นเดียวกัน เช่น โรงไฟฟ้าพลังน้ำเขื่อนภูมิพล (แม่น้ำปิง จังหวัดตาก) โรงไฟฟ้าพลังน้ำเขื่อนสิริกิติ์ (แม่น้ำน่าน จังหวัดอุตรดิตถ์) และโรงไฟฟ้าพลังน้ำเขื่อนศรีนครินทร์ (แม่น้ำแควใหญ่ จังหวัดกาญจนบุรี) เป็นต้น

HDPW-River2. ไฟฟ้าพลังน้ำแบบ Run-of-the-river โรงไฟฟ้าพลังน้ำประเภทนี้ เป็นรูปแบบที่ไม่มีอ่างเก็บน้ำเป็นองค์ประกอบ  จึงไม่มีการบริหารจัดการน้ำ  ดังนั้น  โรงไฟฟ้าพลังน้ำแบบ Run-of-the-river จะทำงานตลอดเวลาตามปริมาณน้ำที่ไหลในแม่น้ำ เนื่องจากโรงไฟฟ้าพลังน้ำแบบ Run-of-the-river มักสร้างอยู่ในบริเวณพื้นที่ค่อนข้างราบ และมีอาคารสำหรับทดน้ำให้สูงขึ้น ด้วยข้อจำกัดด้านภูมิประเทศ ทำให้ความแตกต่างระหว่างระดับน้ำที่ทดขึ้น กับระดับที่ปล่อยทางด้านท้ายน้ำมีความแตกต่างกันไม่มากนัก ดังนั้น ปริมาณไฟฟ้าที่ผลิตได้จากโรงไฟฟ้าพลังน้ำแบบ Run-of-the-river จึงผันแปรตามปริมาณน้ำเป็นสำคัญ
โรงไฟฟ้าพลังน้ำแบบ Run-of-the-river มักก่อสร้างในบริเวณที่มีปริมาณน้ำค่อนข้างมาก และมีน้ำไหลตลอดปี แต่มีภูมิประเทศไม่เหมาะสมที่จะก่อสร้างอ่างเก็บน้ำ โรงไฟฟ้าประเภทนี้ในประเทศไทย ได้แก่ โรงไฟฟ้าเขื่อนปากมูล (แม่น้ำมูล จังหวัดอุบลราชธานี)

3. ไฟฟ้าพลังน้ำแบบสูบกลับ เป็นรูปแบบการผลิตไฟฟ้าที่ตอบสนองช่วงเวลาที่มีความต้องการไฟฟ้าสูงสุด โดยการถ่ายเทน้ำระหว่างอ่างเก็บน้ำที่มีระดับแตกต่างกัน ในช่วงเวลาที่มีความต้องการไฟฟ้าน้อย ปริมาณไฟฟ้าส่วนเกินในระบบจะถูกนำมาใช้ในการสูบน้ำไปยังอ่างเก็บน้ำที่อยู่สูงกว่า เมื่อถึงช่วงเวลาที่มีความต้องการใช้ไฟฟ้ามาก น้ำจะถูกปล่อยกลับลงมายังอ่างเก็บน้ำที่อยู่ต่ำกว่าและผลิตไฟฟ้า ปริมาณไฟฟ้าที่ผลิตได้จึงผันแปรตามปริมาณน้ำ และความแตกต่างของระดับน้ำของอ่างเก็บน้ำทั้งสอง
HDPW-Pump
ตัวอย่างโรงไฟฟ้าพลังน้ำแบบสูบกลับในประเทศไทย คือ โรงไฟฟ้าเขื่อนลำตะคองชลภา-วัฒนา โดยใช้เขื่อนลำตะคอง (แม่น้ำลำตะคอง จังหวัดนครราชสีมา) ซึ่งเป็นอ่างเก็บน้ำที่มีอยู่เดิมและบริหารจัดการน้ำโดยกรมชลประทาน เป็นอ่างเก็บน้ำตัวล่าง และก่อสร้างอ่างเก็บน้ำตัวบนเพิ่มเติมบนเขายายเที่ยง รูปแบบโรงไฟฟ้าเขื่อนลำตะคองชลภาวัฒนา เป็นการเพิ่มประสิทธิภาพการใช้น้ำให้กับอ่างเก็บน้ำที่มีอยู่แล้ว และยังเพิ่มประสิทธิภาพในระบบการผลิตไฟฟ้าได้อีกด้วย
ประโยชน์ของโรงไฟฟ้าพลังน้ำ
Water Cycle-N
ทรัพยากรน้ำเป็นแหล่งเชื้อเพลิงธรรมชาติหมุนเวียนของโรงไฟฟ้า พลังงานน้ำ (Renewable Natural Resource) โดยแตกต่างจากแหล่งเชื้อเพลิงธรรมชาติประเภทอื่นๆ ซึ่งมีปริมาณจำกัด เช่น น้ำมัน ก๊าซ และถ่านหิน เป็นต้น จากวัฏจักรอุทกวิทยา เมื่อฝนตกลงมา น้ำฝนส่วนหนึ่งจะถูกเก็บกักตามที่ลุ่มต่างๆ ทั้งบนพื้นดินและตามใบไม้ต่างๆ และซึมลงสู่ใต้ดิน โดยน้ำส่วนเกินก็จะไหลลงสู่แม่น้ำ และในที่สุดก็ไหลลงสู่ทะเล สำหรับน้ำที่ไหลลงสู่ใต้ดิน บางส่วนก็ถูกขังอยู่ใต้ชั้นดินเป็นน้ำบาดาล บางส่วนก็ไหลกลับลงสู่แม่น้ำ น้ำที่อยู่บนผิวดินในที่ต่างๆ และในทะเล จะระเหยกลายเป็นไอน้ำ ซึ่งรวมถึงการคายน้ำของพืชด้วย และเมื่อมีสภาวะที่เหมาะสม ไอน้ำเหล่านั้นก็จะรวมตัวเป็นเมฆและกลั่นตัวเป็นหยดน้ำตกลงมาเป็นฝน วนเวียนตามวัฏจักรอย่างไม่มีที่สิ้นสุด
น้ำเป็นทรัพยากรธรรมชาติหมุนเวียน ไม่ต้องเสียค่าใช้จ่าย ไม่ก่อให้เกิดมลภาวะเมื่อใช้ในการผลิตไฟฟ้าพลังน้ำ นอกจากนี้ โรงไฟฟ้าพลังน้ำยังมีอายุการใช้งานค่อนข้างยาวกว่าโรงไฟฟ้าประเภทอื่นๆ ซึ่งผลิตไฟฟ้าจากน้ำมัน ก๊าซ และถ่านหิน ในปัจจุบัน โรงไฟฟ้าพลังน้ำเขื่อนภูมิพลมีอายุการใช้งานประมาณ 14-46 ปี (ติดตั้งเครื่องกำเนิดไฟฟ้าไม่พร้อมกัน มีจำนวนทั้งสิ้น 8 ชุด ชุดที่ 1 และ 2 ใช้งานในปี 2507 ชุดที่ 8 ใช้งานใน
ปี 2539) นอกจากนี้ ค่าบำรุงรักษาและค่าดำเนินการยังต่ำกว่าอีกด้วย ดังนั้น โรงไฟฟ้าพลังน้ำจึงมี
ความเหมาะสมในเชิงเศรษฐกิจสูง เมื่อเปรียบเทียบกับโรงไฟฟ้าประเภทอื่นๆ
การที่โรงไฟฟ้าพลังน้ำไม่ได้ใช้ฟอสซิลเป็นแหล่งเชื้อเพลิง จึงไม่ก่อให้เกิดก๊าซคาร์บอนไดออกไซด์ ซึ่งเป็น Greenhouse Gas และเป็นหนึ่งในหลายๆ ปัจจัยที่ทำให้เกิดภาวะโลกร้อน
อัตลักษณ์ของโรงไฟฟ้าพลังน้ำที่โดดเด่น คือ เปิดปุ๊บ ติดปั๊บ ซึ่งโรงไฟฟ้าประเภทอื่นๆ ไม่สามารถทำได้ ดังนั้น โรงไฟฟ้าพลังน้ำ จึงมีประสิทธิผลต่อการรักษาความมั่นคงของระบบไฟฟ้าในกรณีเกิดเหตุสุดวิสัย เช่น ในกรณีที่ระบบส่งเชื้อเพลิง (ก๊าซธรรมชาติ) สำหรับโรงไฟฟ้าพลังความร้อนเสียอย่างกระทันหันในช่วงวันทำงาน โรงไฟฟ้าพลังน้ำก็สามารถเข้ามาเสริมได้ทันที ซึ่งหากใช้โรงไฟฟ้าประเภทอื่นๆ ผลิตไฟฟ้าเพิ่มเติมเพื่อเสริมในส่วนที่ขาดหายไปแล้ว ก็จะต้องใช้เวลาเพื่อให้เครื่องจักรทำงานได้เต็มที่ โดยช่วงเวลาที่รอนั้น อาจทำความเสียหายให้กับเศรษฐกิจของประเทศ ตัวอย่างเช่น
Outflow_SNR
เมื่อมีปัญหาจากแหล่งผลิตก๊าซธรรมชาติยาดานาในประเทศพม่า ลดลง 1,100 ล้านลูกบาศก์ฟุตในช่วงเดือนสิงหาคม   2552   ที่ผ่านมาการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย จึงพึ่งไฟฟ้าพลังน้ำมากขึ้น โดยปล่อยน้ำจาก เขื่อนศรีนครินทร์มากขึ้นต่อเนื่อง และเป็นระยะเวลายาวขึ้น เป็นต้น
ข้อเสียของโรงไฟฟ้าพลังน้ำ
จุดอ่อนที่สำคัญที่สุดของโรงไฟฟ้าพลังน้ำ คือ ต้องมีอ่างเก็บน้ำ ซึ่งการก่อสร้างอ่างเก็บน้ำก่อให้เกิด
ความขัดแย้ง ในสังคมมากมายเนื่องจากผลกระทบต่างๆ ที่เกิดขึ้น โดยเฉพาะผลกระทบด้านสังคมกับประชาชนที่อาศัยและมีที่ดินทำกินในบริเวณพื้นที่อ่างเก็บน้ำและพื้นที่ก่อสร้าง และผลกระทบด้านสิ่งแวดล้อม โดยผลกระทบดังกล่าว เป็นหัวข้อสำคัญที่ก่อให้เกิดความขัดแย้งในสังคมระหว่างผู้ที่เห็นด้วย (ได้รับประโยชน์) และผู้ที่ไม่เห็นด้วย (เสียประโยชน์)
ผลกระทบจากการก่อสร้างอ่างเก็บน้ำ น่าจะไม่เกี่ยวข้องโดยตรงกับการก่อสร้างโรงไฟฟ้าพลังน้ำ เพราะประเทศไทยเป็นประเทศเกษตรกรรม น้ำจึงเป็นสิ่งที่จำเป็นต่อประชาชนและเศรษฐกิจของประเทศ ดังนั้น การเก็บกักน้ำเพื่อตอบสนองต่อความต้องการจึงเป็นสิ่งที่ต้องดำเนินการ โดยปกติตามธรรมชาติ ฝนจะตกไม่สม่ำเสมอตลอดทั้งปี โดยเฉลี่ยในช่วงฤดูฝน (พฤษภาคม-ตุลาคม) จะมีฝนประมาณ 80-90% ของปริมาณฝนทั้งปี และจะมีฝนเพียง 10-20% ในช่วง 6 เดือนที่เหลือ (ภาคใต้จะมีช่วงฤดูฝนยาวกว่าภาคอื่นๆ โดยสิ้นฤดูฝนประมาณเดือนธันวาคม-มกราคม) นอกจากนี้ ในช่วงฤดูฝนเองก็อาจเกิดเหตุการณ์ฝนทิ้งช่วง และด้วยความผันแปรทางธรรมชาติ ปริมาณฝนในแต่ละปีก็จะมีความแตกต่างกัน บางปีมาก บางปีน้อย บางปีปานกลาง
Flow_E-Soo
และหากโชคร้ายมีฝนน้อยติดต่อกันหลายๆ ปี ดังตัวอย่างรูปแบบน้ำท่าของลำอีซูในลุ่มน้ำแม่กลอง จังหวัดกาญจนบุรี ด้วยเหตุการณ์ธรรมชาติเหล่านี้ ไม่สามารถควบคุมหรือเปลี่ยนแปลงได้ ดังนั้น การเกิดอุทกภัยในฤดูฝนและขาดแคลนน้ำในฤดูแล้ง จึงมีโอกาสเกิดขึ้นได้ตลอดเวลาหากไม่มีเครื่องมือในการบริหารจัดการน้ำที่เหมาะสม ซึ่งในปัจจุบัน อ่างเก็บน้ำที่มีขนาดที่เหมาะสมคือเครื่องมือหนึ่งที่มีประสิทธิผลในการบริหารจัดการน้ำ โดยเก็บกักน้ำในช่วงน้ำมาก เพื่อบรรเทาอุทกภัยและเพื่อสำรองไว้ใช้ในช่วงที่ขาดแคลนน้ำ
ด้วยเหตุผลดังกล่าว การก่อสร้างอ่างเก็บน้ำจึงมีความจำเป็นเพื่อบรรเทาและแก้ไขปัญหาเรื่องน้ำของประเทศ ไม่ใช่เพื่อการผลิตไฟฟ้าพลังน้ำ แต่การติดตั้งไฟฟ้าพลังน้ำของเขื่อนต่างๆ เป็นการเพิ่มประสิทธิภาพในการใช้น้ำ เพิ่มมูลค่าน้ำ ลดภาวะมลพิษและโลกร้อน และทำให้การก่อสร้างอ่างเก็บน้ำสามารถคืนทุนได้เร็วขึ้น ดังนั้น แนวคิดในการติดตั้งโรงไฟฟ้าพลังน้ำที่อาคารองค์ประกอบโครงการชลประทานต่างๆ ที่มีอยู่ในปัจจุบัน ซึ่งการไฟฟ้าฝ่ายผลิตแห่งประเทศไทยกำลังดำเนินการอยู่โดยได้รับความร่วมมือจากกรมชลประทานนั้น จึงเป็นแนวทางที่ถูกต้อง และควรเร่งขยายการดำเนินการ
ปริมาณไฟฟ้าพลังน้ำ
เนื่องจากไฟฟ้าพลังน้ำเป็นพลังงานทางเลือกที่มีความคุ้มค่าทางเศรษฐกิจ และมีประโยชน์ในหลายๆ ด้าน ดังที่ได้กล่าวไว้แล้วในข้างต้น ดังนั้น โรงไฟฟ้าพลังน้ำจึงมีการพัฒนาอย่างกว้างขวาง ในปี 2549 ทั่วโลกมีการติดตั้งไฟฟ้าพลังน้ำรวมทั้งสิ้น 777,000 MW สามารถผลิตไฟฟ้าได้ประมาณ 2,998 TWh (ยังไม่รวม Three Gorges Dam ในประเทศจีน ซึ่งเป็นเขื่อนไฟฟ้าพลังน้ำที่ใหญ่ที่สุดในโลก) เป็นสัดส่วนประมาณ 20% ของปริมาณไฟฟ้าโลก และเป็นสัดส่วนประมาณ 88% ของปริมาณไฟฟ้าที่ผลิตจากพลังงานหมุนเวียน
หลังจากประเทศจีนก่อสร้าง Three Gorges Dam แล้วเสร็จ ประเทศจีนเป็นประเทศที่มีเขื่อนไฟฟ้าพลังน้ำใหญ่ที่สุดในโลก รองลงมา ได้แก่ Itaipu Dam ซึ่งตั้งอยู่บริเวณชายแดนระหว่างประเทศปารากวัยและประเทศบราซิล และลำดับสาม ได้แก่ Guri Dam ในประเทศเวเนซูเอลา โดยรายเละเอียดได้แสดงไว้ใน ตารางที่ 1

  ตารางที่ 1  โรงไฟฟ้าพลังน้ำที่ใหญ่ที่สุดในโลก
  โรงไฟฟ้าพลังน้ำ  ประเทศ  จำนวนชุด @ MW  กำลังติดตั้ง (MW)
1. Three Gorges Damจีน26,70018,200
2. Itaibu Damปารากวัย-บราซิล20 @ 70014,000
3. Guri Damเวเนซูเอลา10 @ 1,02010,200
4. Tucurui Damบราซิล8,400
5. Sayano-Shushenskaya Damรัสเซีย10 @ 6406,400
6. Krasnoyarskรัสเซีย6,000
หมายเหตุ  จีนมีแผนที่จะติดตั้งเพิ่มเติมอีก 6@700 MW
ประเทศปารากวัย นอร์เวย์ บราซิล เวเนซูเอลา และแคนาดา เป็นกลุ่มประเทศที่ใช้ไฟฟ้าจากไฟฟ้าพลังน้ำเป็นส่วนใหญ่
(ตารางที่ 2) โดยประเทศปารากวัยนอกจากใช้ไฟฟ้า 100% จากไฟฟ้าพลังน้ำแล้ว ยังส่งออกอีกประมาณ 90% ของไฟฟ้าพลังน้ำที่ผลิตได้ไปยังประเทศบราซิลและประเทศอาร์เจนตินา

ตารางที่ 2  สัดส่วนการใช้ไฟฟ้าจากไฟฟ้าพลังน้ำ
ประเทศ
พลังงานไฟฟ้า (TWh)
กำลังติดตั้ง (GW)
Capacity Factor
สัดส่วนต่อไฟฟ้าทั้งหมด (%)
ปารากวัย
64.0
-
-
1,000.00
นอร์เวย์
140.5
27.528
0.49
98.25
บราซิล
363.8
69.080
0.56
85.56
เวเนซูเอล่า
86.8
-
-
67.17
แคนาดา
369.5
88.974
0.59
61.12
สวีเดน
65.5
16.209
0.46
44.34
รัสเซีย
167.0
45.000
0.42
17.64
จีน 1/
585.2
171.52
0.37
17.18
อินเดีย
115.6
33.600
0.43
15.80
ฝรั่งเศส
63.4
25.335
0.25
11.23
ญี่ปุ่น
69.2
27.229
0.37
7.21
สหรัฐอเมริกา
250.6
79.511
0.42
5.74
หมายเหตุ 1/ข้อมูลปี 2551


สำหรับประเทศไทย ไฟฟ้าพลังน้ำที่ใช้ในประเทศมาจาก 3 แห่ง ด้วยกัน คือ จากโรงไฟฟ้าพลังน้ำในความรับผิดชอบของการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย โรงไฟฟ้าพลังน้ำในความรับผิดชอบของกรมพัฒนา-พลังงานทดแทนและอนุรักษ์พลังงาน และจากโรงไฟฟ้าพลังน้ำในประเทศลาว โดยในปี 2552 ไฟฟ้าที่ผลิตจากไฟฟ้าพลังน้ำที่ใช้ในประเทศมีปริมาณทั้งสิ้น 9,313 GWh ดังที่ได้แสดงไว้ใน ตารางที่ 3 ซึ่งสามารถสรุปได้ดังนี้

แหล่ง
พลังงานไฟฟ้า (GWh)
สัดส่วน (%)
การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย
6,942.24
74.54
กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน
24.04
0.26
จากประเทศลาว
2,346.76
25.20
รวม
9,313.04
100.00


ตารางที่ 3 กำลังติดตั้งไฟฟ้าพลังน้ำในระบบไฟฟ้าของประเทศไทย (ปี 2552) (ต่อ)
โรงไฟฟ้าจังหวัดชุดที่กำลังผลิต (MW)พลังงาน (GWh)Plant Factorวันใช้งาน
แต่ละชุดรวม
การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย
1เขื่อนภูมิพลตาก182.20


17พ.ค.2507



282.20


15มิ.ย.2507



382.20


11พ.ค.2510



482.20


9ส.ค.2510



582.20


25ต.ค.2511



682.20


18ส.ค.2512



7115.00


18ต.ค.2525



8171.00779.201,667.950.2416ม.ค.2539
2เขื่อนน้ำพุงสกลนคร13.00


20ต.ค.2508



23.006.0016.500.3120ต.ค.2508
3เขื่อนอุบลรัตน์ขอนแก่น18.40


13มี.ค.2509



28.40


13มี.ค.2509



38.4025.2066.940.3019มิ.ย.2511
4เขื่อนสิรินธรอุบลราชธานี112.00


1พ.ย.2514



212.00


31ต.ค.2514



312.0036.00129.950.4128มี.ค.2527
5เขื่อนจุฬาภรณ์ชัยภูมิ120.00


29ต.ค.2515



220.0040.00123.010.356พ.ย.2515
6เขื่อนสิริกิติ์อุตรดิตถ์1125.00


12ม.ค.2517



2125.00


18มี.ค.2517



3125.00


3ก.ค.2517



4125.00500.001,144.510.2619ก.ย.2538
7เขื่อนแก่งกระจานเพชรบุรี119.0019.00

7ส.ค.2517
8เขื่อนบ้านยางเชียงใหม่10.06


1ก.พ.2517



20.06








30.010.130.330.29


9เขื่อนศรีนครินทร์กาญจนบุรี1120.00


12ก.พ.2523



2120.00


26ก.พ.2523



3120.00


19มี.ค.2523



4180.00


25พ.ย.2528



5180.00720.001,465.880.2319มี.ค.2534
10เขื่อนบางลางยะลา124.00


7ก.ค.2524



224.00


10ส.ค.2524



324.0072.00263.480.4225ต.ค.2524
11เขื่อนห้วยกุ่มชัยภูมิ11.061.063.980.4311ก.พ.2525
12เขื่อนบ้านสันติยะลา11.281.288.470.7619ต.ค.2525
13เขื่อนท่าทุ่งนากาญจนบุรี119.50


24ธ.ค.2525



219.5039.00192.880.567ก.พ.2525
14เขื่อนบ้านขุนกลางเชียงใหม่10.09


5ธ.ค.2526



20.09


5ธ.ค.2526



30.020.201.150.664พ.ย.2547
15เขื่อนคลองช่องกล่ำสระแก้ว10.020.020.020.1112ก.ย.2527
16เขื่อนวชิราลงกรณ์กาญจนบุรี1100.00


13ก.พ.2528



2100.00


24ธ.ค.2527



3100.00300.001,007.970.3829ต.ค.2527
17เขื่อนแม่งัดเชียงใหม่14.50


19ต.ค.2528



24.509.0016.310.2125ก.ย.2528
18เขื่อนรัชชประภาสุราษฎร์ธานี180.00


21พ.ค.2530



280.00


8เม.ย.2531



380.00240.00484.900.2323ธ.ค.2529
19เขื่อนห้วยกุยมั่งกาญจนบุรี10.100.100.180.212ก.ย.2530
20เขื่อนปากมูลอุบลราชธานี134.00


9ต.ค.2537



234.00


2ก.ย.2537



334.00


24มิ.ย.2537



434.00136.00155.310.1314ส.ค.2537
21เขื่อนลำตะคอง ชลภาวัฒนานครราชสีมา1250.00


19ก.ค.2547



2250.00500.00192.520.0419ก.ค.2547
รวม3,424.193,424.196,942.240.23


กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน








1คีรีธารจันทบุรี
12.2012.2024.040.224ธ.ค.2529
รวม12.2012.2024.04



ซื้อไฟฟ้าพลังน้ำจากประเทศลาว








1Nam Ngum & Xeset



191.23



2Theun Hinboun
1107.00


6ม.ค.2541



2107.00214.001,455.66
6ม.ค.2541
3Houay-Ho
163.00


3ก.ย.2542



263.00126.00250.91
3ก.ย.2542
4Nam Theun 2



448.96



รวม

2,346.76




ในปี 2552 พลังงานไฟฟ้าที่ผลิตได้และซื้อมีปริมาณทั้งสิ้น 145,233.02 GWh โดยเป็นพลังงานไฟฟ้าพลังน้ำที่ผลิตภายในประเทศ 6,966.28 GWh หรือประมาณ 4.8% ของความต้องการพลังงานไฟฟ้าทั้งหมด
เนื่องจากประเทศมีความจำเป็นต้องการแหล่งผลิตไฟฟ้าเพิ่มเติมเพื่อรองรับความต้องการไฟฟ้าที่เพิ่มขึ้นในอนาคต การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย จึงมีแผนที่จะติดตั้งโรงไฟฟ้าพลังน้ำในโครงการชลประทานต่างๆ ในปัจจุบันที่มีศักยภาพ โดยคาดว่าภายในปี 2556 จะสามารถติดตั้งไฟฟ้าพลังน้ำเพิ่มเติมได้ประมาณ 78.7 MW ดังที่ได้สรุปไว้ในตารางที่ 4
ตารางที่ 4 แผนการติดตั้งไฟฟ้าพลังน้ำในโครงการชลประทานปัจจุบัน
โรงไฟฟ้าชุดที่กำลังผลิต (MW)วันใช้งาน



แต่ละชุดรวม

1เขื่อนเจ้าพระยา16.0
ม.ค.2554


26.012.0ม.ค.2554
2เขื่อนนเรศวร18.08.0ต.ค.2554
3เขื่อนแม่กลอง16.0
ม.ค.2555


26.012.0ม.ค.2555
4เขื่อนขุนด่านปราการชล110.010.0เม.ย.2555
5เขื่อนป่าสักชลสิทธิ์16.76.7พ.ค.2555
6เขื่อนแควน้อย115.0
ม.ค.2556


215.030.0ม.ค.2556
รวม78.778.7

สรุป
พลังน้ำเป็นทรัพยากรธรรมชาติหมุนเวียนที่มีพลังมหาศาล ซึ่งหากมีการบริหารจัดการที่เหมาะสมแล้ว นอกจากจะสามารถบรรเทาความเสียหายจากอุทกภัยแล้ว ยังมีประโยชน์อย่างอนันต์ต่อมนุษยชาติ เฉกเช่นไฟฟ้าพลังน้ำ ซึ่งเป็นพลังงานหมุนเวียนที่สะอาดและเป็นมิตรต่อภาวะแวดล้อมของโลก ดังนั้น จึงควรสนับสนุนการพัฒนาแหล่งน้ำควบคู่กับการพัฒนาไฟฟ้าพลังน้ำให้กว้างขวางมากยิ่งขึ้น
ในประเทศไทย ทัศนคติของสังคมต่อการพัฒนาไฟฟ้าพลังน้ำยังคงเป็นทัศนคติทางด้านลบ เพราะเข้าใจว่าการพัฒนาไฟฟ้าพลังน้ำเป็นการแย่งชิงทรัพยากรน้ำจากภาคการเกษตร (คนจน) ไปให้ภาคอุตสาหกรรม
(คนรวย) ซึ่งเป็นทัศนคติที่ไม่ถูกต้อง จึงควรมีการปรับเปลี่ยนทัศนคตินั้นให้ถูกต้องตามเหตุและผล เพื่อประเทศจะสามารถพัฒนาไฟฟ้าพลังน้ำได้ต่อไป อันจะทำให้การใช้ทรัพยากรน้ำเป็นไปอย่างมีประสิทธิภาพ และช่วยลดภาวะมลพิษต่างๆ ที่อาจจะเกิดขึ้นเนื่องจากการผลิตไฟฟ้าจากพลังงานความร้อนอื่นๆ ซึ่งใช้ฟอสซิลเป็นแหล่งเชื้อเพลิง
ความพยายามในการพัฒนาไฟฟ้าพลังน้ำจากโครงการแหล่งน้ำและชลประทานที่มีอยู่ในปัจจุบัน เป็นแนวทางที่ถูกต้องที่รัฐควรให้การสนับสนุน และควรมีการขยายขอบเขตการดำเนินงานให้กว้างขวางมากยิ่งขึ้น เพื่อเป็นการใช้สิ่งที่มีอยู่ในปัจจุบันให้เกิดประโยชน์สูงสุด...